Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-{3-[(4-Oxopiperidin-1-yl)carbonyl]benzoyl}piperidin-4-one

K. Rajesh,^a V. Vijayakumar,^a‡ S. Sarveswari,^a T. Narasimhamurthy^b and Edward R. T. Tiekink^c*

^aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014. India. ^bMaterials Research Centre. Indian Institute of Science. Bengaluru 560012, India, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 28 June 2010; accepted 6 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.054; wR factor = 0.157; data-to-parameter ratio = 14.9

Two independent molecules comprise the asymmetric unit in the title compound, C₁₈H₂₀N₂O₄. One of the molecules exhibits disorder in one of its 4-piperidone rings, which is disposed over two orientations [site occupancy of the major component = 0.651(5)]. The first independent molecule and the minor component of the second disordered molecule are virtually superimposable. The central four C atoms in the major component of the disordered molecule have an opposite orientation. All the 4-piperidone rings have a chair conformation. The carbonyl groups in each molecule have approximate *anti* conformations $[O=C \cdot \cdot \cdot C=O = 146.2 (2)]$ and $-159.9 (2)^{\circ}$]. The 4-piperidone rings lie to opposite sides of the central benzene ring in both molecules. In the crystal, molecules are linked by C-H···O interactions. The crystal studied was found to be a non-merohedral twin (twin law -10 $0, 0 \downarrow 0, 0 - 1/2 - 1$), the fractional contribution of the minor component being approximately 11%.

Related literature

For the background on the use of N-substituted-4-piperidones in organic synthesis, see: Dyakov et al. (1991); Scherer et al. (1993). For related structures, see: Vijayakumar et al. (2010); Rajesh et al. (2010).

‡ Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Experimental

Crystal data

$C_{18}H_{20}N_2O_4$	$\gamma = 90.009 \ (5)^{\circ}$
$M_r = 328.36$	V = 1621.3 (12) Å ³
Triclinic, P1	Z = 4
a = 10.777 (5) Å	Mo $K\alpha$ radiation
b = 11.244 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 13.665 (5) Å	T = 293 K
$\alpha = 101.500 \ (5)^{\circ}$	$0.27 \times 0.21 \times 0.16 \text{ mm}$
$\beta = 92.279 \ (5)^{\circ}$	

Data collection

Bruker SMART APEX CCD
diffractometer
33080 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	12 restraints
$wR(F^2) = 0.157$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
6729 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
451 parameters	

6729 independent reflections 4023 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.060$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4-H4b···O1 ⁱ	0.97	2.58	3.383 (4)	141
C22-H22b···O5 ⁱⁱ	0.97	2.44	3.295 (4)	146
$C35-H35b\cdots O8^{iii}$	0.97	2.55	3.297 (5)	134
Compared and the second second	(1)	1.1. (")	. 1 . 1	1.1. (!!!)

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -v, -z + 2

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5532).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dyakov, M. Y., Sokolova, T. D., Peretokin, A. S., Moskovkin, A. S. & Unkovskii, B. V. (1991). Chem. Heterocycl. Compd, 27, 183-186.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Rajesh, K., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1306-o1307.
- Scherer, T., Hielkema, W., Krijnen, B., Hermant, R. M., Eijckelhoff, C., Kerkhof, F., Ng, A. K. F., Verleg, R., van der Tol, E. B., Brouwer, A. M. & Verhoeven, J. W. (1993). Recl Trav. Chim. Pays Bas, 112, 535-548.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vijayakumar, V., Rajesh, K., Suresh, J., Narasimhamurthy, T. & Lakshman, P. L. N. (2010). Acta Cryst. E66, 0170.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, o1988 [doi:10.1107/S1600536810026681]

1-{3-[(4-Oxopiperidin-1-yl)carbonyl]benzoyl}piperidin-4-one

K. Rajesh, V. Vijayakumar, S. Sarveswari, T. Narasimhamurthy and E. R. T. Tiekink

Comment

The synthesis of *N*-substituted-4-piperidones is subject of continuing interest owing to their importance as synthetic building blocks in medicinal chemistry, in particular for the synthesis of pharmacologically active agents (Dyakov *et al.*, 1991; Scherer *et al.*, 1993). In continuation of recent structural studies on *N*-substituted-4-piperidones (Vijayakumar *et al.*, 2010, Rajesh *et al.*, 2010), the title compound, (I), was investigated.

Two independent molecules comprise the asymmetric unit of (I). One molecule is ordered, Fig. 1, and the other is disordered, Fig. 2. In the disordered molecule, one 4-piperidone ring is disordered over two positions. The major component of the disorder has the central four carbon atoms of the N4-bound 4-piperidone ring in an opposite orientation to that found in the ordered molecule. This is emphasized in Fig. 3 which shows the superimposition of the ordered molecule upon the inverted disordered molecule. The minor component of the disordered ring has a conformation similar to that observed in the ordered molecule, Fig. 1. All 4-piperidone rings have a chair conformation. The carbonyl groups bound to the central benzene ring are almost *anti* as seen in the $O=C\cdots C=O$ torsion angles of 146.2 (2) and -159.9 (2) ° for the two independent molecules, respectively. In each case, the 4-piperidone rings lie to opposite sides of the central benzene ring.

The most significant intermolecular contacts in the crystal structure are of the type C–H…O, Table 1, and these consolidate the crystal packing, Fig. 4.

Experimental

To a suspension of 4-piperidone hydrochloride monohydrate (1 mmol) in benzene (20 ml) was added triethyl amine (3 mmol), followed by thorough stirring for 15 min. To that, isophthaloyl dichloride (0.5 mmol) dissolved in benzene (20 ml) was added drop wise with stirring, followed by refluxing for 7 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, excess solvent was removed under reduced pressure. The crude products obtained were purified by column chromatography using an ethyl acetate/petroleum ether mixture (1:1). The sample (50 mg) was crystallized in 1:1 mixture of chloroform/methanol (5 + 5 ml) to yield colourless blocks of (I); m.pt. 415–417 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93-0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. Disorder in the N4-bound 4-piperidone ring was resolved over two positions. The major component (anisotropic refinement) had a site occupancy factor = 0.651 (5); the minor component was refined isotropically. The N–C and C–C distances in the disordered rings were refined with distance restraints 1.46 ± 0.005 and 1.51 ± 0.005 Å, respectively. For the treatment of twinned diffraction data, see: Spek (2009).

Figures

Fig. 1. The molecular structure of first independent molecule, showing displacement ellipsoids at the 35% probability level.

Fig. 2. The molecular structure of second independent molecule, showing displacement ellipsoids at the 35% probability level. Only the major component of the disordered 4-piperidone residue is shown for reasons of clarity.

Fig. 3. Overlay diagram of the first independent molecule with the inverted disordered molecule (minor component of the disordered molecule excluded).

Fig. 4. Stacking of supramolecular layers along the c axis in (I). The C–H···O contacts are shown as orange dashed lines.

1-{3-[(4-Oxopiperidin-1-yl)carbonyl]benzoyl}piperidin-4-one

Crystal data

$C_{18}H_{20}N_2O_4$	Z = 4
$M_r = 328.36$	F(000) = 696
Triclinic, <i>P</i> T	$D_{\rm x} = 1.345 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.777 (5) Å	Cell parameters from 5023 reflections
b = 11.244 (5) Å	$\theta = 1.2 - 23.5^{\circ}$
c = 13.665 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 101.500 \ (5)^{\circ}$	T = 293 K
$\beta = 92.279 \ (5)^{\circ}$	Block, colourless
$\gamma = 90.009 \ (5)^{\circ}$	$0.27\times0.21\times0.16~mm$
$V = 1621.3 (12) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer

4023 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.060$
$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.4$
$h = -13 \rightarrow 13$
$k = -14 \rightarrow 14$
$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.157$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0747P)^2 + 0.149P]$ where $P = (F_o^2 + 2F_c^2)/3$
6729 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
451 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
12 restraints	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.0517 (2)	0.05185 (19)	0.37691 (15)	0.0823 (6)	
O2	0.15121 (18)	0.57298 (16)	0.53412 (13)	0.0638 (5)	
O3	-0.17857 (18)	0.34740 (19)	0.82228 (18)	0.0876 (7)	
O4	-0.55985 (18)	0.7338 (2)	0.87389 (15)	0.0817 (6)	
N1	0.17700 (18)	0.37391 (18)	0.53706 (13)	0.0467 (5)	
N2	-0.25096 (19)	0.53525 (19)	0.86990 (16)	0.0571 (6)	
C1	0.2050 (2)	0.3415 (2)	0.43153 (17)	0.0558 (7)	
H1A	0.2861	0.3040	0.4247	0.067*	
H1B	0.2069	0.4141	0.4034	0.067*	
C2	0.1071 (3)	0.2538 (2)	0.37500 (18)	0.0587 (7)	
H2A	0.0317	0.2985	0.3668	0.070*	
H2B	0.1360	0.2207	0.3089	0.070*	
C3	0.0769 (2)	0.1518 (2)	0.4244 (2)	0.0539 (6)	

C4	0.0729 (3)	0.1818 (2)	0.53700 (18)	0.0604 (7)
H4A	-0.0073	0.2165	0.5557	0.072*
H4B	0.0813	0.1076	0.5626	0.072*
C5	0.1739 (2)	0.2699 (2)	0.58474 (18)	0.0524 (6)
H5A	0.1592	0.2969	0.6552	0.063*
H5B	0.2536	0.2295	0.5789	0.063*
C6	0.1487 (2)	0.4878 (2)	0.57888 (17)	0.0441 (6)
C7	0.1117 (2)	0.5125 (2)	0.68628 (16)	0.0403 (5)
C8	-0.0031 (2)	0.4751 (2)	0.71243 (16)	0.0421 (5)
H8	-0.0558	0.4292	0.6637	0.050*
C9	-0.0401 (2)	0.5051 (2)	0.80980 (16)	0.0408 (5)
C10	0.0404 (2)	0.5695 (2)	0.88251 (17)	0.0465 (6)
H10	0.0166	0.5893	0.9484	0.056*
C11	0.1561 (2)	0.6045 (2)	0.85785 (18)	0.0485 (6)
H11	0.2106	0.6462	0.9074	0.058*
C12	0.1907 (2)	0.5776 (2)	0.75993 (17)	0.0452 (6)
H12	0.2677	0.6035	0.7433	0.054*
C13	-0.1622 (2)	0.4571 (2)	0.83514 (17)	0.0469 (6)
C14	-0.2436 (2)	0.6670 (2)	0.8809 (2)	0.0612 (7)
H14A	-0.1656	0.6890	0.8559	0.073*
H14B	-0.2453	0.7046	0.9512	0.073*
C15	-0.3504 (2)	0.7144 (3)	0.8245 (2)	0.0665 (8)
H15A	-0.3500	0.8024	0.8411	0.080*
H15B	-0.3393	0.6898	0.7533	0.080*
C16	-0.4735 (2)	0.6676 (3)	0.84948 (19)	0.0586 (7)
C17	-0.4781 (2)	0.5332 (3)	0.8422 (2)	0.0632 (7)
H17A	-0.4755	0.4926	0.7726	0.076*
H17B	-0.5554	0.5108	0.8681	0.076*
C18	-0.3685 (2)	0.4922 (3)	0.9015 (2)	0.0671 (8)
H18A	-0.3772	0.5240	0.9722	0.081*
H18B	-0.3681	0.4043	0.8910	0.081*
05	0.5437 (2)	0.38661 (19)	0.38183 (15)	0.0794 (6)
06	0.64560 (18)	-0.05160 (16)	0.54295 (13)	0.0646 (5)
07	0.2983 (2)	0.31306 (19)	0.8416 (2)	0.1035 (8)
08	-0.08234 (17)	-0.06160 (18)	0.88350 (15)	0.0737 (6)
N3	0.67154 (18)	0.14907 (18)	0.54821 (13)	0.0481 (5)
C19	0.7071 (3)	0.1321 (3)	0.44466 (18)	0.0589 (7)
H19A	0.7131	0.0461	0.4167	0.071*
H19B	0.7880	0.1689	0.4420	0.071*
C20	0.6126 (3)	0.1891 (2)	0.38345 (18)	0.0578 (7)
H20A	0.6475	0.1930	0.3198	0.069*
H20B	0.5399	0.1367	0.3699	0.069*
C21	0.5730(2)	0.3124 (2)	0.43124 (18)	0.0510 (6)
C22	0.5636 (3)	0.3373 (2)	0.54298 (18)	0.0599 (7)
H22A	0.4829	0.3101	0.5591	0.072*
H22B	0.5693	0.4242	0.5681	0.072*
C23	0.6631 (2)	0.2758 (2)	0.59541 (18)	0.0539 (6)
H23A	0.7424	0.3157	0.5930	0.065*
H23B	0.6438	0.2826	0.6650	0.065*

C24	0.6393 (2)	0.0544 (2)	0.58790 (17)	0.0446 (6)	
C25	0.5937 (2)	0.0812 (2)	0.69292 (16)	0.0402 (5)	
C26	0.4768 (2)	0.1274 (2)	0.71318 (16)	0.0413 (5)	
H26	0.4265	0.1460	0.6615	0.050*	
C27	0.4329 (2)	0.1466 (2)	0.80919 (16)	0.0419 (5)	
C28	0.5098 (3)	0.1197 (3)	0.88504 (18)	0.0594 (7)	
H28	0.4825	0.1326	0.9500	0.071*	
C29	0.6268 (3)	0.0741 (3)	0.86509 (19)	0.0660 (8)	
H29	0.6780	0.0568	0.9167	0.079*	
C30	0.6685 (2)	0.0539 (2)	0.76915 (19)	0.0545 (6)	
H30	0.7470	0.0219	0.7560	0.065*	
C31	0.3084 (2)	0.2047 (2)	0.82956 (16)	0.0462 (6)	
N4	0.2093 (2)	0.13604 (18)	0.8326 (2)	0.0849 (9)	0.651 (5)
C32	0.2036 (4)	0.0042 (3)	0.7921 (3)	0.0601 (13)	0.651 (5)
H32A	0.2866	-0.0286	0.7838	0.072*	0.651 (5)
H32B	0.1590	-0.0125	0.7278	0.072*	0.651 (5)
C33	0.1364 (4)	-0.0516 (4)	0.8672 (5)	0.0654 (15)	0.651 (5)
H33A	0.1330	-0.1392	0.8461	0.078*	0.651 (5)
H33B	0.1795	-0.0318	0.9322	0.078*	0.651 (5)
C34	0.0071 (2)	-0.0008 (2)	0.8733 (3)	0.0783 (9)	0.651 (5)
C35	0.0043 (3)	0.1382 (3)	0.9018 (3)	0.0468 (10)	0.651 (5)
H35A	-0.0805	0.1664	0.8990	0.056*	0.651 (5)
H35B	0.0385	0.1654	0.9693	0.056*	0.651 (5)
C36	0.0810 (3)	0.1890 (3)	0.8286 (4)	0.0525 (11)	0.651 (5)
H36A	0.0439	0.1667	0.7616	0.063*	0.651 (5)
H36B	0.0852	0.2769	0.8471	0.063*	0.651 (5)
N4'	0.2093 (2)	0.13604 (18)	0.8326 (2)	0.0849 (9)	0.349 (5)
C32'	0.2315 (6)	0.0198 (5)	0.8719 (6)	0.051 (2)*	0.349 (5)
H32C	0.2297	0.0347	0.9442	0.061*	0.349 (5)
H32D	0.3102	-0.0165	0.8511	0.061*	0.349 (5)
C33'	0.1227 (5)	-0.0600 (9)	0.8235 (7)	0.059 (3)*	0.349 (5)
H33C	0.1322	-0.1420	0.8350	0.071*	0.349 (5)
H33D	0.1171	-0.0629	0.7520	0.071*	0.349 (5)
C34'	0.0071 (2)	-0.0008(2)	0.8733 (3)	0.0783 (9)	0.349 (5)
C35'	-0.0040 (7)	0.1174 (5)	0.8348 (6)	0.061 (2)*	0.349 (5)
H35C	0.0037	0.1031	0.7630	0.073*	0.349 (5)
H35D	-0.0827	0.1566	0.8517	0.073*	0.349 (5)
C36'	0.1034 (5)	0.1925 (7)	0.8885 (6)	0.059 (3)*	0.349 (5)
H36C	0.0953	0.2772	0.8841	0.071*	0.349 (5)
H36D	0.1109	0.1861	0.9582	0.071*	0.349 (5)
					. ,

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1075 (17)	0.0681 (14)	0.0680 (13)	-0.0254 (12)	0.0079 (12)	0.0048 (11)
O2	0.0859 (14)	0.0568 (11)	0.0543 (11)	-0.0098 (10)	0.0125 (10)	0.0228 (9)
O3	0.0683 (13)	0.0556 (13)	0.144 (2)	-0.0076 (10)	0.0246 (13)	0.0285 (12)
O4	0.0487 (11)	0.0999 (16)	0.0840 (15)	0.0016 (11)	0.0113 (10)	-0.0130 (12)

N1	0.0523 (12)	0.0520 (13)	0.0373 (11)	0.0008 (9)	0.0084 (9)	0.0115 (9)
N2	0.0468 (12)	0.0563 (14)	0.0728 (15)	-0.0048 (10)	0.0209 (11)	0.0207 (11)
C1	0.0608 (16)	0.0644 (17)	0.0439 (14)	-0.0018 (13)	0.0158 (12)	0.0121 (12)
C2	0.0723 (18)	0.0638 (17)	0.0410 (14)	0.0021 (14)	0.0075 (13)	0.0116 (12)
C3	0.0506 (15)	0.0531 (16)	0.0587 (16)	0.0003 (12)	0.0070 (12)	0.0119 (13)
C4	0.0790 (19)	0.0534 (16)	0.0534 (16)	0.0028 (14)	0.0176 (14)	0.0190 (12)
C5	0.0588 (15)	0.0574 (16)	0.0448 (14)	0.0175 (13)	0.0092 (12)	0.0181 (12)
C6	0.0375 (12)	0.0536 (15)	0.0437 (13)	-0.0081 (11)	0.0028 (10)	0.0157 (12)
C7	0.0413 (12)	0.0415 (13)	0.0405 (13)	-0.0006 (10)	0.0021 (10)	0.0135 (10)
C8	0.0400 (12)	0.0466 (13)	0.0400 (13)	-0.0044 (10)	-0.0014 (10)	0.0101 (10)
С9	0.0385 (12)	0.0412 (13)	0.0444 (13)	0.0025 (10)	0.0023 (10)	0.0128 (10)
C10	0.0505 (14)	0.0484 (14)	0.0411 (13)	0.0033 (11)	0.0055 (11)	0.0090 (11)
C11	0.0443 (14)	0.0492 (14)	0.0492 (15)	-0.0035 (11)	-0.0048 (11)	0.0044 (11)
C12	0.0364 (12)	0.0477 (14)	0.0530 (15)	-0.0025 (10)	0.0016 (11)	0.0136 (11)
C13	0.0472 (14)	0.0481 (15)	0.0490 (14)	-0.0042 (12)	0.0058 (11)	0.0173 (11)
C14	0.0492 (15)	0.0595 (17)	0.0718 (18)	-0.0083 (13)	0.0164 (13)	0.0027 (13)
C15	0.0512 (16)	0.0593 (17)	0.091 (2)	-0.0015 (13)	0.0156 (15)	0.0179 (15)
C16	0.0463 (15)	0.076 (2)	0.0489 (15)	-0.0043 (14)	0.0039 (12)	0.0019 (13)
C17	0.0489 (15)	0.081 (2)	0.0613 (17)	-0.0182 (14)	0.0103 (13)	0.0177 (14)
C18	0.0530 (16)	0.082 (2)	0.0747 (19)	-0.0085 (14)	0.0232 (14)	0.0314 (16)
05	0.1040 (16)	0.0772 (14)	0.0626 (12)	0.0314 (12)	0.0150 (11)	0.0252 (11)
06	0.0862 (14)	0.0492 (11)	0.0583 (11)	0.0143 (9)	0.0210 (10)	0.0069 (9)
07	0.0663 (14)	0.0498 (13)	0.199 (3)	0.0023 (10)	0.0305 (15)	0.0313 (14)
08	0.0566 (12)	0.0771 (14)	0.0938 (15)	-0.0121 (10)	0.0025 (10)	0.0324 (11)
N3	0.0531 (12)	0.0516 (12)	0.0400 (11)	0.0026 (9)	0.0106 (9)	0.0086 (9)
C19	0.0681 (17)	0.0643 (17)	0.0466 (15)	0.0132 (14)	0.0225 (13)	0.0127 (12)
C20	0.0815 (19)	0.0520 (16)	0.0411 (14)	0.0001 (14)	0.0112 (13)	0.0102 (11)
C21	0.0489 (14)	0.0557 (16)	0.0509 (15)	0.0004 (12)	0.0082 (12)	0.0155 (12)
C22	0.0818 (19)	0.0497 (15)	0.0492 (15)	0.0076 (14)	0.0195 (14)	0.0089 (12)
C23	0.0640 (16)	0.0520 (15)	0.0448 (14)	-0.0178 (13)	0.0076 (12)	0.0062 (11)
C24	0.0390 (12)	0.0508 (15)	0.0448 (14)	0.0072 (11)	0.0037 (10)	0.0106 (12)
C25	0.0404 (12)	0.0403 (13)	0.0404 (13)	-0.0025 (10)	0.0002 (10)	0.0096 (10)
C26	0.0426 (13)	0.0470 (13)	0.0351 (12)	0.0016 (10)	-0.0016 (10)	0.0106 (10)
C27	0.0459 (13)	0.0430 (13)	0.0365 (13)	-0.0039 (10)	0.0032 (10)	0.0070 (10)
C28	0.0635 (17)	0.0771 (19)	0.0380 (14)	0.0008 (14)	0.0033 (12)	0.0123 (12)
C29	0.0628 (18)	0.092 (2)	0.0453 (16)	0.0058 (16)	-0.0132 (13)	0.0218 (14)
C30	0.0454 (14)	0.0657 (17)	0.0528 (16)	0.0063 (12)	-0.0035 (12)	0.0141 (12)
C31	0.0534 (15)	0.0453 (15)	0.0393 (13)	-0.0015 (12)	0.0091 (11)	0.0056 (10)
N4	0.0552 (14)	0.0385 (13)	0.161 (3)	0.0060 (10)	0.0509 (16)	0.0108 (14)
C32	0.047 (2)	0.053 (3)	0.072 (3)	-0.0023 (18)	0.016 (2)	-0.010(2)
C33	0.063 (3)	0.047 (3)	0.092 (4)	0.005 (2)	0.003 (3)	0.027 (3)
C34	0.0522 (17)	0.067 (2)	0.126 (3)	0.0006 (15)	0.0085 (17)	0.0418 (19)
C35	0.042 (2)	0.054 (2)	0.045 (2)	0.0069 (17)	0.0108 (17)	0.0095 (17)
C36	0.051 (2)	0.048 (2)	0.064 (3)	0.0118 (18)	0.016 (2)	0.022 (2)
N4'	0.0552 (14)	0.0385 (13)	0.161 (3)	0.0060 (10)	0.0509 (16)	0.0108 (14)
C34'	0.0522 (17)	0.067 (2)	0.126 (3)	0.0006 (15)	0.0085 (17)	0.0418 (19)
	· /		· /	· /	· /	· · · ·

Geometric parameters (Å, °)

O1—C3	1.205 (3)	C19—C20	1.514 (4)
O2—C6	1.236 (3)	С19—Н19А	0.9700
O3—C13	1.222 (3)	С19—Н19В	0.9700
O4—C16	1.207 (3)	C20—C21	1.481 (3)
N1—C6	1.335 (3)	C20—H20A	0.9700
N1—C5	1.449 (3)	C20—H20B	0.9700
N1—C1	1.459 (3)	C21—C22	1.504 (3)
N2—C13	1.335 (3)	C22—C23	1.510 (4)
N2—C14	1.461 (3)	C22—H22A	0.9700
N2—C18	1.467 (3)	C22—H22B	0.9700
C1—C2	1.521 (4)	C23—H23A	0.9700
C1—H1A	0.9700	С23—Н23В	0.9700
C1—H1B	0.9700	C24—C25	1.509 (3)
C2—C3	1.484 (4)	C25—C30	1.375 (3)
C2—H2A	0.9700	C25—C26	1.379 (3)
C2—H2B	0.9700	C26—C27	1.389 (3)
C3—C4	1.510 (4)	C26—H26	0.9300
C4—C5	1.509 (4)	C27—C28	1.382 (3)
C4—H4A	0.9700	C27—C31	1.504 (3)
C4—H4B	0.9700	C28—C29	1.377 (4)
C5—H5A	0.9700	C28—H28	0.9300
С5—Н5В	0.9700	C29—C30	1.379 (3)
C6—C7	1.508 (3)	С29—Н29	0.9300
C7—C12	1.382 (3)	С30—Н30	0.9300
С7—С8	1.390 (3)	C31—N4'	1.324 (3)
C8—C9	1.381 (3)	C31—N4	1.324 (3)
С8—Н8	0.9300	N4—C32	1.476 (3)
C9—C10	1.381 (3)	N4—C36	1.509 (3)
C9—C13	1.501 (3)	C32—C33	1.513 (4)
C10-C11	1.381 (3)	C32—H32A	0.9700
С10—Н10	0.9300	С32—Н32В	0.9700
C11—C12	1.378 (3)	C33—C34	1.505 (4)
C11—H11	0.9300	С33—Н33А	0.9700
C12—H12	0.9300	С33—Н33В	0.9700
C14—C15	1.516 (4)	C34—C35	1.534 (4)
C14—H14A	0.9700	C35—C36	1.517 (4)
C14—H14B	0.9700	С35—Н35А	0.9700
C15—C16	1.504 (4)	С35—Н35В	0.9700
C15—H15A	0.9700	С36—Н36А	0.9700
C15—H15B	0.9700	С36—Н36В	0.9700
C16—C17	1.495 (4)	N4'—C36'	1.471 (5)
C17—C18	1.530 (4)	N4'—C32'	1.524 (4)
C17—H17A	0.9700	C32'—C33'	1.522 (5)
С17—Н17В	0.9700	C32'—H32C	0.9700
C18—H18A	0.9700	C32'—H32D	0.9700
C18—H18B	0.9700	C33'—C34'	1.532 (5)

O5—C21	1.208 (3)	C33'—H33C	0.9700
O6—C24	1.230 (3)	C33'—H33D	0.9700
O7—C31	1.202 (3)	C34'—C35'	1.526 (5)
O8—C34'	1.210 (3)	C35'—C36'	1.509 (5)
O8—C34	1.210 (3)	С35'—Н35С	0.9700
N3—C24	1.339 (3)	C35'—H35D	0.9700
N3—C23	1.446 (3)	С36'—Н36С	0.9700
N3—C19	1.456 (3)	C36'—H36D	0.9700
C6—N1—C5	126.11 (19)	O5—C21—C22	122.1 (2)
C6—N1—C1	120.8 (2)	C20—C21—C22	116.6 (2)
C5—N1—C1	112.87 (19)	C21—C22—C23	113.4 (2)
C13—N2—C14	125.6 (2)	C21—C22—H22A	108.9
C13—N2—C18	120.7 (2)	С23—С22—Н22А	108.9
C14—N2—C18	113.6 (2)	C21—C22—H22B	108.9
N1—C1—C2	110.16 (19)	С23—С22—Н22В	108.9
N1—C1—H1A	109.6	H22A—C22—H22B	107.7
C2—C1—H1A	109.6	N3—C23—C22	110.4 (2)
N1—C1—H1B	109.6	N3—C23—H23A	109.6
C2—C1—H1B	109.6	С22—С23—Н23А	109.6
H1A—C1—H1B	108.1	N3—C23—H23B	109.6
C3—C2—C1	114.2 (2)	С22—С23—Н23В	109.6
C3—C2—H2A	108.7	H23A—C23—H23B	108.1
C1—C2—H2A	108.7	O6—C24—N3	123.1 (2)
C3—C2—H2B	108.7	O6—C24—C25	119.5 (2)
C1—C2—H2B	108.7	N3—C24—C25	117.4 (2)
H2A—C2—H2B	107.6	C30—C25—C26	119.5 (2)
O1—C3—C2	121.7 (2)	C30—C25—C24	119.0 (2)
O1—C3—C4	122.0 (2)	C26—C25—C24	121.44 (19)
C2—C3—C4	116.3 (2)	C25—C26—C27	121.3 (2)
C5—C4—C3	112.7 (2)	С25—С26—Н26	119.4
С5—С4—Н4А	109.1	С27—С26—Н26	119.4
C3—C4—H4A	109.1	C28—C27—C26	118.4 (2)
C5—C4—H4B	109.1	C28—C27—C31	121.8 (2)
C3—C4—H4B	109.1	C26—C27—C31	119.7 (2)
H4A—C4—H4B	107.8	C29—C28—C27	120.4 (2)
N1—C5—C4	110.7 (2)	C29—C28—H28	119.8
N1—C5—H5A	109.5	С27—С28—Н28	119.8
C4—C5—H5A	109.5	C28—C29—C30	120.5 (2)
N1—C5—H5B	109.5	С28—С29—Н29	119.7
C4—C5—H5B	109.5	С30—С29—Н29	119.7
H5A—C5—H5B	108.1	C25—C30—C29	119.9 (2)
O2—C6—N1	123.4 (2)	С25—С30—Н30	120.1
O2—C6—C7	118.9 (2)	С29—С30—Н30	120.1
N1—C6—C7	117.74 (19)	O7—C31—N4'	119.9 (2)
C12—C7—C8	119.0 (2)	O7—C31—N4	119.9 (2)
C12—C7—C6	119.9 (2)	O7—C31—C27	120.2 (2)
C8—C7—C6	121.05 (19)	N4'—C31—C27	119.9 (2)
C9—C8—C7	120.9 (2)	N4—C31—C27	119.9 (2)
С9—С8—Н8	119.5	C31—N4—C32	123.9 (2)

С7—С8—Н8	119.5	C31—N4—C36	120.1 (2)
C8—C9—C10	119.2 (2)	C32—N4—C36	109.7 (3)
C8—C9—C13	118.8 (2)	N4—C32—C33	106.3 (3)
C10-C9-C13	121.8 (2)	N4—C32—H32A	110.5
C9—C10—C11	120.4 (2)	С33—С32—Н32А	110.5
С9—С10—Н10	119.8	N4—C32—H32B	110.5
C11—C10—H10	119.8	С33—С32—Н32В	110.5
C12—C11—C10	120.1 (2)	H32A—C32—H32B	108.7
C12—C11—H11	120.0	C34—C33—C32	107.6 (3)
C10-C11-H11	120.0	С34—С33—Н33А	110.2
C11—C12—C7	120.4 (2)	С32—С33—Н33А	110.2
C11—C12—H12	119.8	С34—С33—Н33В	110.2
C7—C12—H12	119.8	С32—С33—Н33В	110.2
O3—C13—N2	121.6 (2)	H33A—C33—H33B	108.5
O3—C13—C9	119.2 (2)	O8—C34—C33	122.2 (3)
N2—C13—C9	119.2 (2)	O8—C34—C35	121.2 (3)
N2—C14—C15	111.3 (2)	C33—C34—C35	113.4 (3)
N2—C14—H14A	109.4	C36—C35—C34	108.4 (3)
C15—C14—H14A	109.4	С36—С35—Н35А	110.0
N2—C14—H14B	109.4	С34—С35—Н35А	110.0
C15—C14—H14B	109.4	С36—С35—Н35В	110.0
H14A—C14—H14B	108.0	С34—С35—Н35В	110.0
C16-C15-C14	111.7 (2)	H35A—C35—H35B	108.4
C16-C15-H15A	109.3	N4—C36—C35	107.2 (3)
C14—C15—H15A	109.3	N4—C36—H36A	110.3
C16—C15—H15B	109.3	С35—С36—Н36А	110.3
C14—C15—H15B	109.3	N4—C36—H36B	110.3
H15A—C15—H15B	107.9	С35—С36—Н36В	110.3
O4—C16—C17	123.7 (3)	H36A—C36—H36B	108.5
O4—C16—C15	122.3 (3)	C31—N4'—C36'	117.8 (3)
C17—C16—C15	114.0 (2)	C31—N4'—C32'	116.2 (3)
C16—C17—C18	110.4 (2)	C36'—N4'—C32'	104.0 (5)
С16—С17—Н17А	109.6	N4'—C32'—C33'	102.3 (6)
C18—C17—H17A	109.6	N4'—C32'—H32C	111.3
С16—С17—Н17В	109.6	C33'—C32'—H32C	111.3
C18—C17—H17B	109.6	N4'—C32'—H32D	111.3
H17A—C17—H17B	108.1	C33'—C32'—H32D	111.3
N2-C18-C17	110.5 (2)	H32C—C32'—H32D	109.2
N2	109.6	C32'—C33'—C34'	105.5 (5)
C17—C18—H18A	109.6	С32'—С33'—Н33С	110.6
N2	109.6	С34'—С33'—Н33С	110.6
C17—C18—H18B	109.6	C32'—C33'—H33D	110.6
H18A—C18—H18B	108.1	C34'—C33'—H33D	110.6
C24—N3—C23	126.11 (19)	H33C—C33'—H33D	108.8
C24—N3—C19	121.0 (2)	O8—C34'—C35'	122.6 (4)
C23—N3—C19	112.53 (19)	O8—C34'—C33'	120.7 (4)
N3—C19—C20	110.6 (2)	C35'—C34'—C33'	103.4 (6)
N3—C19—H19A	109.5	C36'—C35'—C34'	103.0 (5)
С20—С19—Н19А	109.5	С36'—С35'—Н35С	111.2

N3—C19—H19B	109.5	C34'—C35'—H35C	111.2
С20—С19—Н19В	109.5	C36'—C35'—H35D	111.2
H19A—C19—H19B	108.1	C34'—C35'—H35D	111.2
C21—C20—C19	114.7 (2)	H35C—C35'—H35D	109.1
C21—C20—H20A	108.6	N4'—C36'—C35'	101.6 (5)
C19—C20—H20A	108.6	N4'—C36'—H36C	111.4
C21—C20—H20B	108.6	С35'—С36'—Н36С	111.4
С19—С20—Н20В	108.6	N4'—C36'—H36D	111.4
H20A—C20—H20B	107.6	C35'—C36'—H36D	111.4
O5—C21—C20	121.2 (2)	H36C—C36'—H36D	109.3
C6—N1—C1—C2	-115.3 (2)	C19—N3—C23—C22	62.4 (3)
C5—N1—C1—C2	60.0 (3)	C21—C22—C23—N3	-48.9 (3)
N1—C1—C2—C3	-46.9 (3)	C23—N3—C24—O6	178.1 (2)
C1—C2—C3—O1	-145.0 (3)	C19—N3—C24—O6	5.1 (4)
C1—C2—C3—C4	38.2 (3)	C23—N3—C24—C25	-2.1 (3)
O1—C3—C4—C5	144.0 (3)	C19—N3—C24—C25	-175.1 (2)
C2—C3—C4—C5	-39.2 (3)	O6—C24—C25—C30	71.4 (3)
C6—N1—C5—C4	112.9 (3)	N3—C24—C25—C30	-108.4 (3)
C1—N1—C5—C4	-62.0 (3)	O6—C24—C25—C26	-105.7 (3)
C3—C4—C5—N1	49.6 (3)	N3—C24—C25—C26	74.5 (3)
C5—N1—C6—O2	-178.9 (2)	C30—C25—C26—C27	-0.2 (3)
C1—N1—C6—O2	-4.4 (3)	C24—C25—C26—C27	176.9 (2)
C5—N1—C6—C7	1.0 (3)	C25—C26—C27—C28	0.8 (3)
C1—N1—C6—C7	175.6 (2)	C25—C26—C27—C31	176.0 (2)
O2—C6—C7—C12	-70.4 (3)	C26—C27—C28—C29	-0.6 (4)
N1—C6—C7—C12	109.7 (2)	C31—C27—C28—C29	-175.6 (2)
O2—C6—C7—C8	107.0 (3)	C27—C28—C29—C30	-0.3 (4)
N1—C6—C7—C8	-72.9 (3)	C26—C25—C30—C29	-0.7 (4)
C12—C7—C8—C9	1.9 (3)	C24—C25—C30—C29	-177.9 (2)
C6—C7—C8—C9	-175.5 (2)	C28—C29—C30—C25	1.0 (4)
C7—C8—C9—C10	-2.4 (3)	C28—C27—C31—O7	94.2 (3)
C7—C8—C9—C13	-176.9 (2)	C26—C27—C31—O7	-80.7 (3)
C8—C9—C10—C11	0.7 (3)	C28—C27—C31—N4'	-86.9 (3)
C13—C9—C10—C11	175.0 (2)	C26—C27—C31—N4'	98.2 (3)
C9—C10—C11—C12	1.5 (4)	C28—C27—C31—N4	-86.9 (3)
C10-C11-C12-C7	-1.9 (4)	C26—C27—C31—N4	98.2 (3)
C8—C7—C12—C11	0.3 (3)	O7—C31—N4—C32	162.4 (3)
C6—C7—C12—C11	177.7 (2)	C27—C31—N4—C32	-16.6 (5)
C14—N2—C13—O3	-175.3 (3)	O7—C31—N4—C36	13.3 (5)
C18—N2—C13—O3	4.9 (4)	C27—C31—N4—C36	-165.6 (3)
C14—N2—C13—C9	3.8 (4)	C31—N4—C32—C33	138.5 (4)
C18—N2—C13—C9	-176.1 (2)	C36—N4—C32—C33	-69.7 (4)
C8—C9—C13—O3	60.7 (3)	N4-C32-C33-C34	62.4 (5)
C10-C9-C13-O3	-113.7 (3)	C32—C33—C34—O8	142.8 (4)
C8—C9—C13—N2	-118.4 (3)	C32—C33—C34—C35	-57.2 (5)
C10—C9—C13—N2	67.2 (3)	O8—C34—C35—C36	-145.0 (4)
C13—N2—C14—C15	123.8 (3)	C33—C34—C35—C36	54.7 (5)
C18—N2—C14—C15	-56.4 (3)	C31—N4—C36—C35	-139.9 (3)
N2-C14-C15-C16	50.7 (3)	C32—N4—C36—C35	67.1 (4)

C14-C15-C16-O4	129.6 (3)	C34—C35—C36—N4	-56.5 (4)
C14—C15—C16—C17	-49.9 (3)	O7—C31—N4'—C36'	-24.0 (6)
O4—C16—C17—C18	-128.2 (3)	C27—C31—N4'—C36'	157.1 (5)
C15-C16-C17-C18	51.3 (3)	O7—C31—N4'—C32'	-148.4 (4)
C13—N2—C18—C17	-122.2 (3)	C27—C31—N4'—C32'	32.7 (5)
C14—N2—C18—C17	58.0 (3)	C31—N4'—C32'—C33'	-155.4 (4)
C16—C17—C18—N2	-53.9 (3)	C36'—N4'—C32'—C33'	73.5 (6)
C24—N3—C19—C20	113.6 (2)	N4'—C32'—C33'—C34'	-68.4 (8)
C23—N3—C19—C20	-60.3 (3)	C32'—C33'—C34'—O8	-149.6 (5)
N3-C19-C20-C21	45.5 (3)	C32'—C33'—C34'—C35'	68.6 (8)
C19—C20—C21—O5	148.6 (3)	O8—C34'—C35'—C36'	148.0 (5)
C19—C20—C21—C22	-35.2 (3)	C33'—C34'—C35'—C36'	-71.1 (7)
O5—C21—C22—C23	-147.1 (3)	C31—N4'—C36'—C35'	152.4 (5)
C20—C21—C22—C23	36.7 (3)	C32'—N4'—C36'—C35'	-77.4 (7)
C24—N3—C23—C22	-111.1 (3)	C34'—C35'—C36'—N4'	75.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
C4—H4b…O1 ⁱ	0.97	2.58	3.383 (4)	141
C22—H22b····O5 ⁱⁱ	0.97	2.44	3.295 (4)	146
C35—H35b···O8 ⁱⁱⁱ	0.97	2.55	3.297 (5)	134
Symmetry codes: (i) $-x$, $-y$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x$, $-y$, $-z+2$.				

Fig. 1

Fig. 4